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ABSTRACT 

The need for the real-time interactive co-visualization of 3D urban 

environments on a Web-based virtual Globe arises naturally in 

GIS but it still remains challenging due to the complexity of city 

models and their huge data sizes which largely overload the 

computational power and memory capacity of client devices. 

Especially on the Web, the visualization of city models makes 

their rendering not real-time because of the lack of content 

adaptation and progressive data transmission. This paper presents 

technical solutions for the co-visualization of massive city models 

in a Web-based virtual globe, allowing navigation over 3D cities 

on the globe in real-time. The volume of 3D city data, such as 

building data, does not allow us to render them directly, nor to 

keep them in the main memory. We propose to use not only a 

hierarchical presentation of geo-spatial data to create a chunk-

based multiple resolution data structure which reduces complexity 

of the geometry being rendered; but also a view dependent 

algorithm so that only small subsets of 3D city models are 

streamed progressively in real-time and kept in client memory to 

contribute efficiently to the rendered image. Experimental results 

show that we can navigate over 3D cities on the Globe in real-

time.   

CCS Concepts 

• Human-centered computing~Web-based interaction   • Human-

centered computing~Geographic visualization   • Human-centered 

computing~Visualization toolkits 
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1. INTRODUCTION 
Virtual globes are known for their ability to render massive real-

world terrain, imagery and vector datasets and have brought 

significant attention to researchers of different domains such as 

Big Data, Computer Graphics, GIS, etc. The popularity of virtual 

globes such as Google Earth, NASA WorldWind, Microsoft Bing 

Maps 3D, and Esri ArcGIS Explorer is almost back-office 

software.  

The internet browsers nowadays show incredible possibilities with 

HTML5. It makes it possible to use all the power of our device 

such as sensors, GPS, accelerometer, camera, etc. In addition, the 

advent of WebGL enables a direct integration of hardware-

accelerated 3D graphics into standard web pages without the need 

of plug-ins. Thus, it provides a way for the creation of new web-

based applications that were previously the exclusive domain of 

the desktop environment. In recent year, many web-based virtual 

globes, such as Google Maps, Nokia Here, Apple Flyover and 

Cesium have been developed. Such web-based virtual globes 

focus on rendering Digital Terrain Model (DTM), Digital 

Elevation Model (DEM), Imagery and vector datasets but truly 3D 

city data, such as 3D building, still remains challenging because 

of its complex data structure and its huge information which  

makes the co-visualization unworkable with a naive approach. 

The main issues are because of the lack of content adaptation (i.e. 

lack of level of details (LODs)) that makes the systems suffering 

from network latency (due to the data downloading time and serve 

multiple users simultaneously); heterogeneous client devices such 

as mobile phones, tablets and PCs do not work in these cases. 

Lack of progressive data transmission causes a poor rendering. 

Data structure is not GPU-friendly creating a bottleneck on the 

PCI bus. Data loading and data rendering processes are not 

decoupled which dramatically reduces performance. Also no 

treatment of rendering artifacts (i.e. popping, z-fitting, jittering, 

etc) making the co-visualization unpleasant to the eyes.   

This paper presents technical solutions for real-time and massive 

co-visualization of 3D city models on a web-based virtual globe, 

called iTowns (*). We chose this open-source framework to 

develop our method because iTowns is the only Web-based 

virtual globe that is developed under the ThreeJS library 

supported by a large WebGL/Javascript community. Our paper is 

organized as follows. In section 2, we present some challenging 

problems to render 3D urban models in large-scale on globe. In 

section 3, we explain how we deal with large-scale geospatial data 

by using tiling system and chunk-based multi-resolution models 

which support progressive data transmission and view-dependent 

algorithm. In section 4, we present our modified Chunked-LOD 

algorithm as a view-dependent algorithm to select and render 

massively 3D city models in real-time. Experimental results are 

shown in section 5. 

2. Related works  
Visualization of data on globe raises many scientific problems. 

Given the sheer size of the Earth, it requires approximately 2 

petabytes of storage for an imagery layer at resolution higher than 

one meter per pixel. In 2006, Google announce storage of 70 

terabytes of compressed imageries that were stored in Bigtable to 

serve Google Earth and Google Maps [1]. Datasets of this size 

must be managed with specialized techniques, which is an active 

area of research. 

Various techniques have been presented to face the problem of 

real-time globe rendering. The key is to locally adapt surface 

geometric complexity to changing view parameters; the reader is 

invited to read a good book, written by Cozzi et al [14], to know 

more about virtual globes. In existing virtual globes, authors focus 

on developing a view-dependent LOD control for quad-tree 

structured imagery, DTM and DEM. Nowadays, some very good 

commercial virtual globes, such as Google Maps, Here, Flyover or 

even open-source virtual globes such as Cesium or iTowns can 



 

 render such data in real time. Note that DTM does not take into 

account the height of buildings or trees and DEM takes into 

account the relief, but also be called the "canopy" (treetops) which 

does not have urban furniture and building details. In our case, 

iTowns can take care of imagery, DTM layers on Globe, and the 

primary focus of our implementation is towards developing a co- 

visualization of 3D city models with other data layers of iTowns, 

so that end-users can view the globe as a whole and zoom into 

building or street level to see their details.  

Fast rendering of 3D city models within web-based applications 

still remains challenging. Recently, various efforts have been 

made in order to design progressive delivery of 3D content, for 

the use with high-performance 3D applications on the web, but 

not for large-scale geospatial data such as 3D building models. 

The Khronos Group proposes the glTF format for the transmission 

of 3D models into WebGL applications. The format is designed in 

a straightforward manner so that it maps very well to GPU 

structures on the client side. But the format does not support the 

progressive transmission of meshes. Other authors try to improve 

the problem by porting Progressive Meshes (PMs), originally 

presented by Hoppe [12], to the web [10].  Even that, the lack of 

view-dependency makes this method still be slow on the web. To 

deal with rendering complex geometries at interactive framerates, 

Hoppe [4] proposes to use view-dependent refinement of PMs. 

The data has hierarchical structure which allows the viewer to 

remove redundant data and adjust LOD to adapt the mesh 

complexity according to its contribution to the rendered image. 

However, the PMs are only working with manifold geometry 

which is applicable to terrain data but not to 3D city models. In 

addition, it introduces significant decode time overhead. As 

alternatives for the PMs, Streaming Meshes, proposed by 

Lindstrom et al. [11], try to reorder input mesh data in such a way 

that it can be split into fixed-size memory buffers. This enables a 

simple progressive transmission of mesh data, and direct upload 

of downloaded data to GPU memory. In a similar spirit, the POP 

buffer algorithm [8] sorts the triangle mesh using hierarchy of 

quantization grids. The triangles can then be grouped according to 

the precision level where they first appear, which enables the 

creation of a nested, progressive structure. The data is then saved 

in SRC format [7] which is a modified version of glTF. The 

methods focus on progressive mesh transmission; the lack of 

spatial hierarchical data structure and view-dependent LODs 

control still make the system suffer from latency; no loading 

priority is used for data items in this approach. In addition, the file 

format is not compact and is unusable for our purposes. 

3. Chunk-based multi-resolution models  
In our case, the 3D city models are reconstructed from Terrestrial 

and Airborne Lidar point clouds [15]. The models have very high 

resolution; the amount of data goes to terabytes of storage for a 

city that does not allow us either to render them directly or to keep 

them in the main memory. We need two strategies: A chunk-

based multiple resolution data structure (CMRs) which reduces 

complexity of the geometry being rendered and supports 

progressive data transmission, and a view-dependent out-of-core 

strategy to filter out as efficiently as possible the data that is not 

contributing to the rendered image and cope efficiently with the 

insufficient amount of GPU and CPU memory. Our method must 

scale well with our large-scale geospatial datasets; enabling a 

progressive transmission of mesh data; reducing loading time with 

data compression; eliminating decode time by decoupling render 

thread and decode thread; the data structure must be GPU friendly 

so that it can be uploaded directly to GPU after decompression.  

Dealing with city wide 3D models. Difficulties arise when 

rendering large-scale 3D models of a city because simplification 

methods start from a detailed mesh and the city models contain 

huge information that does not fit to main memory. Various 

techniques have been presented to face the problem of huge mesh 

simplification: Out-of-core construction using memory insensitive 

simplification, proposed by Lindstrom [3], to construct a 

multiresolution hierarchy; External memory management 

proposed by Cignoni et al [2] to construct an octree of huge 

meshes. These methods seem to be very interesting, they can deal 

with a huge mesh of hundred million of triangles, but it still does 

not work with our large-scale geospatial data which has 

quadrillion of triangles and may take terabytes of storage for 

whole city.  

To deal with that, we borrow an idea from traditional approach of 

imagery, the city models are partitioned into tiles (i.e. squared 

mesh block). By partitioning the data into tiles, we can address 

main memory constraints, but the tile data were still heavily GPU 

/CPU bound. Even when we apply LOD on tiles, it is unable to 

generate model updates at full GPU speed and to efficiently 

communicate them to the graphic card, because of mesh size at 

high LOD. A solution is to depart from multiple LOD meshes and 

to adopt a chunk-based hierarchical data structure; each chunk is a 

set of triangles, a connected part of the mesh, from which our 

view-dependent Chunked-LOD algorithm can efficiently stream 

and render data. In addition, with a tiling system, we can easily 

apply horizon culling to eliminate tiles which are occluded by the 

horizon. 

Chunk-based multi-resolution model for tile. Some parts of tile 

may be occluded or outside the view frustum and thus do not 

contribute to the rendered image. In addition, some regions of a 

tile may lie closer to the viewer than others; so separated parts of 

a tile need to be rendered at different levels of details. This 

problem can be addressed by creating a hierarchy of meshes 

within a tile. In [2][3], authors propose to use an octree or a kd-

tree to partition a mesh into multi resolution fragments. But their 

multiresolution structures make the CPU a bottleneck because 

they take decisions at the triangle/vertex primitive level. This kind 

of approach is thus not able to choose what has to be rendered fast 

enough.  

To overcome this bottleneck, we reuse the ideas proposed in 

[5][6], where the granularity is moved from individual triangles to 

chunks of triangles. We use a Kd-tree to arrange mesh fragments 

(chunks) at different resolutions. The chunk is optimized in a 

GPU friendly fashion with a triangular-stripe layout and is thus 

ready to send to GPU memory on demand. The root node if each 

tile thus contains a drastically simplified version of its original 

mesh. Each child node contains a subset of its parent, where each 

subset is more detailed than its parent but covers a smaller spatial 

extent. The union of the meshes borne by leaves of Kd-tree 

(maximum depth) encodes the original tile mesh at full resolution. 

In rendering, GPU only needs to consider each chunk rather than 

considering individual triangles, as is required in state of the art 

algorithms. A chunk in the distance may be rendered with less
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 geometry and lower resolution textures if it were close to the 

viewer. In this way, the amount of processing that needs to be 

done by the CPU/GPU is greatly reduced. CMRs can also reduce 

the quantity of data sent to the GPU over the system bus

 

Figure 1: A tile mesh of 100x100 meters, containing 350K 

faces and 256K vertices. Figure (a) illustrates root node that is 

drastically simplified version of tile. Figure (b) shows second 

level of tree when camera approaches and (c) (d) shows its 

other levels when camera is close to the building façade, we 

can see a more detailed mesh without any cracking issue. The 

colors identify the chunks. 

Cracking and popping artifact. Chunk-based multi resolution 

produces popping artifacts when switching between different 

LODs. To enforce continuity of the surface along the boundary of 

the chunks at different resolutions, many techniques are proposed 

such as marking, stitches and geo-morphing [6]. Among them, we 

found that the geo-morph technique works well; it allows 

eliminating popping artifacts between different LODs. The 

technique interpolates smoothly geometries from different LODs. 

An example of geo-morph is illustrated in figure 1 (d) 

Pre-computed viewing parameters. The viewing parameters 

(such as the geometric error, the chunk’s bounding volume, 

horizon culling points, pivot, etc) are used by the Chunked-LOD 

algorithm to eliminate redundant data. These parameters have a 

high computational cost. In our work, such parameters are pre-

computed so that the viewer only needs to load them as metadata 

without any additional computation. 

Progressive data streaming format. We want to save our tile in 

a file but we do not want to send all data within a single batch as 

our tile mesh has a hierarchical data structure. We found the 

Nexus format (**) which is very well designed for multiple 

resolution meshes. We extend this format for our geo-spatial data 

by adding the parameters that will be used by our Chunked-LOD 

algorithm (HC points, pivots, etc).  

4. Massive rendering on Globe 
Considering that 3D models for a city are often measured in 

terabytes, it comes as no surprise that the entire dataset cannot be 

in client memory (GPU/CPU’s) all at once. No web-based 

application can cope with this size, which demands us to cut the 

dataset into tiles and construct CRMs for each tile. This 

hierarchical data structure motivates the use of out-of-core 

rendering algorithms. The idea is to visualize only tiles which 

have compatible viewing parameters (view frustum, HC, SSE). 

By using view parameters, new portions (chunks) of the tile mesh 

are brought into system memory, and old portions are removed, 

ideally without stuttering rendering. This allows us to keep only 

small subset chunks in system memory. The rest resides in a file 

in secondary storage on network server.  

In this paper, we do not combine our tiles into a unique tree for a 

city or all cities on the Earth. Instead, we manage multiple trees to 

show a city on the globe, this allows us to easily use horizon 

culling (HC) technique to eliminate tiles which are occluded by 

the globe shape. 

Chunked-LOD algorithm.  We extended a view-dependent 

algorithm, called Chunked LOD, originally proposed by Ulrich 

[13], for massive terrain rendering. Unlike Ulrich’s method, our 

Chunked-LOD algorithm operates on tiles and also on chunks. In 

addition, we use an additional culling condition to eliminate tiles 

which are not contributing to the rendered image. Our algorithm is 

structured as in figure 2.  

Our Chunked-LOD algorithm operates first on tiles to verify 

which tiles are visible from the camera, checking two conditions: 

Frustum and Horizon. Thanks to the pre-computation of viewing 

parameters, we do not need to load chunk data to estimate these 

parameters. The viewing parameters are saved in file header and 

are only loaded the first time the tile appears to be visible from the 

camera. For each visible tile, we start at root node, according to 

screen space error (SSE), if the node has sufficient details for the 

scene, it is rendered. Otherwise, the node is refined, meaning that 

its children are considered for rendering instead. This process 

continues recursively until the entire tile is rendered.  

 

Figure 2: View-dependent Chunked-LOD algorithm 

Unlike original Chunked-LOD algorithm which needs data to be 

available in client memory to compute viewing parameters, our 

method runs very fast because the viewing parameters are pre-

computed. Only relevant chunks, which are added to the render 

list, must be downloaded from the server.   

Screen space error (SSE). We determine the required chunk 

LOD with SSE which measures the number of pixels of difference 

that would result by rendering a lower-detail version of the chunk 

rather than its higher-detail version. The SSE is upperbounded by 

dividing the geometric error by the distance from the viewpoint to 

the bounding sphere. If the bounding sphere is outside of the 

camera’s frustum, the SSE is set to zero, if the viewpoint is inside 

the bounding sphere, the SSE is infinite  

Tile horizon culling. When it comes to rendering a city on a 

globe, we need to consider the Earth itself as an occluder 

especially when the viewer is close and parallel to terrain surface, 

horizon culling really eliminates many occluded tiles (***).



 

5. Results 
Our system is designed for high resolution data as the one 

illustrated in figure 1. The tile mesh is reconstructed from 

Terrestrial and Airborne Lidar point clouds and contains 350K 

faces and 256K vertices within a 100x100 meters extent. At this 

time, we do not have the data in large-scale, for a city by example, 

but this data can go to terabytes of storage for a whole city. As we 

can see in the figure 1, thank to Chunked-LOD algorithm, only 

chunks which are in the view frustum and satisfy SSE will be 

extracted and be streamed progressively to web browser. The 

parts of tile mesh which are outside of camera frustum stay on the 

server side in the same file. During navigation, new portions of 

the mesh are brought into system memory and old portions are. 

Precomputed chunks are also compressed and organized in GPU 

friendly fashion; so that they can be sent and updated easily to 

GPU memory with zero copy GPU uploads. Decompression can 

be done in rendering thread but doing that causes severe stalls, 

making the globe unusable. Instead, chunks are loaded and 

decompressed in separate threads in our Chunked-LOD program. 

 

Figure 3: Co-visualization of Bati3D with iTowns’s virtual 

globe 

The data illustrated in figure 1 is not available at this time for a 

whole city. We test our system again large-scale problem with the 

Bati3D, 3D city models produced by IGN. This database contains 

3D building models of some French cities. Figure 3 shows how 

our proposed method can visualize Bati3D of the entire Paris city 

within the iTowns virtual globe. This database is partitioned into 

squared tiles of 500x500 meters. For a whole city such as Paris, 

we have around 400 tiles. Each tile contains approximately 100K 

faces and vertices. When camera is far from the terrain (as 

illustrated in figure 3 (a)), the view encompasses the entire globe, 

the entire terrain is inside the frustum and thus nothing is culled. 

SSE becomes very important, at such an altitude, any building 

details are visible. Thanks to SSE, no building is selected to 

render list (figure 3 (a)), only imagery and DTM are rendered on 

the globe. Figure 3 (b) shows the footprint of 3D building model; 

at this level, only simplified building mesh of the root node is 

downloaded and rendered. When zoomed in, however, our 

Chunked-LOD method eliminates a large percentage of the tiles 

and chunks that should not be rendered. Figure 3 (c) illustrates 

more building details when camera is closer to them. 

Conclusions and future works: We proposed some technical 

solutions to co-visualize 3D city models on Web-based virtual 

globe. Experimental results show that we can navigate over 3D 

cities on the globe in real-time. For future works, the approach 

will be extended to multiple directions, including the support of 

textured meshes and heterogeneous tile and chunk hierarchies. 
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