
*https://github.com/iTowns/itowns2

Progressive streaming and massive rendering of 3D city
models on web-based virtual globe

Quoc-Dinh Nguyen
1
, Mathieu Bredif

2
, Didier Richard

3
 and Nicolas Paparoditis

4

Univ. Paris-Est, IGN, ENSG, F-77420 Champs-sur-Marne
4

 Univ. Paris-Est, LASTIG VALILAB, IGN, ENSG, F-77420 Champs-sur-Marne
1,3

 Univ. Paris-Est, LASTIG MATIS, IGN, ENSG, F-94160 Saint-Mandé, France
1,2

quoc-dinh.nguyen@ign.fr, mathieu.bredif@ign.fr, didier.richard@ign.fr, nicolas.paparoditis@ign.fr

ABSTRACT

The need for the real-time interactive co-visualization of 3D urban

environments on a Web-based virtual Globe arises naturally in

GIS but it still remains challenging due to the complexity of city

models and their huge data sizes which largely overload the

computational power and memory capacity of client devices.

Especially on the Web, the visualization of city models makes

their rendering not real-time because of the lack of content

adaptation and progressive data transmission. This paper presents

technical solutions for the co-visualization of massive city models

in a Web-based virtual globe, allowing navigation over 3D cities

on the globe in real-time. The volume of 3D city data, such as

building data, does not allow us to render them directly, nor to

keep them in the main memory. We propose to use not only a

hierarchical presentation of geo-spatial data to create a chunk-

based multiple resolution data structure which reduces complexity

of the geometry being rendered; but also a view dependent

algorithm so that only small subsets of 3D city models are

streamed progressively in real-time and kept in client memory to

contribute efficiently to the rendered image. Experimental results

show that we can navigate over 3D cities on the Globe in real-

time.

CCS Concepts

• Human-centered computing~Web-based interaction • Human-

centered computing~Geographic visualization • Human-centered

computing~Visualization toolkits

Keywords

Virtual Globe; GIS; 3D urban models; massive rendering;

progressive streaming; view-dependent LOD control; Chunked-

LOD.

1. INTRODUCTION
Virtual globes are known for their ability to render massive real-

world terrain, imagery and vector datasets and have brought

significant attention to researchers of different domains such as

Big Data, Computer Graphics, GIS, etc. The popularity of virtual

globes such as Google Earth, NASA WorldWind, Microsoft Bing

Maps 3D, and Esri ArcGIS Explorer is almost back-office

software.

The internet browsers nowadays show incredible possibilities with

HTML5. It makes it possible to use all the power of our device

such as sensors, GPS, accelerometer, camera, etc. In addition, the

advent of WebGL enables a direct integration of hardware-

accelerated 3D graphics into standard web pages without the need

of plug-ins. Thus, it provides a way for the creation of new web-

based applications that were previously the exclusive domain of

the desktop environment. In recent year, many web-based virtual

globes, such as Google Maps, Nokia Here, Apple Flyover and

Cesium have been developed. Such web-based virtual globes

focus on rendering Digital Terrain Model (DTM), Digital

Elevation Model (DEM), Imagery and vector datasets but truly 3D

city data, such as 3D building, still remains challenging because

of its complex data structure and its huge information which

makes the co-visualization unworkable with a naive approach.

The main issues are because of the lack of content adaptation (i.e.

lack of level of details (LODs)) that makes the systems suffering

from network latency (due to the data downloading time and serve

multiple users simultaneously); heterogeneous client devices such

as mobile phones, tablets and PCs do not work in these cases.

Lack of progressive data transmission causes a poor rendering.

Data structure is not GPU-friendly creating a bottleneck on the

PCI bus. Data loading and data rendering processes are not

decoupled which dramatically reduces performance. Also no

treatment of rendering artifacts (i.e. popping, z-fitting, jittering,

etc) making the co-visualization unpleasant to the eyes.

This paper presents technical solutions for real-time and massive

co-visualization of 3D city models on a web-based virtual globe,

called iTowns (*). We chose this open-source framework to

develop our method because iTowns is the only Web-based

virtual globe that is developed under the ThreeJS library

supported by a large WebGL/Javascript community. Our paper is

organized as follows. In section 2, we present some challenging

problems to render 3D urban models in large-scale on globe. In

section 3, we explain how we deal with large-scale geospatial data

by using tiling system and chunk-based multi-resolution models

which support progressive data transmission and view-dependent

algorithm. In section 4, we present our modified Chunked-LOD

algorithm as a view-dependent algorithm to select and render

massively 3D city models in real-time. Experimental results are

shown in section 5.

2. Related works
Visualization of data on globe raises many scientific problems.

Given the sheer size of the Earth, it requires approximately 2

petabytes of storage for an imagery layer at resolution higher than

one meter per pixel. In 2006, Google announce storage of 70

terabytes of compressed imageries that were stored in Bigtable to

serve Google Earth and Google Maps [1]. Datasets of this size

must be managed with specialized techniques, which is an active

area of research.

Various techniques have been presented to face the problem of

real-time globe rendering. The key is to locally adapt surface

geometric complexity to changing view parameters; the reader is

invited to read a good book, written by Cozzi et al [14], to know

more about virtual globes. In existing virtual globes, authors focus

on developing a view-dependent LOD control for quad-tree

structured imagery, DTM and DEM. Nowadays, some very good

commercial virtual globes, such as Google Maps, Here, Flyover or

even open-source virtual globes such as Cesium or iTowns can

 render such data in real time. Note that DTM does not take into

account the height of buildings or trees and DEM takes into

account the relief, but also be called the "canopy" (treetops) which

does not have urban furniture and building details. In our case,

iTowns can take care of imagery, DTM layers on Globe, and the

primary focus of our implementation is towards developing a co-

visualization of 3D city models with other data layers of iTowns,

so that end-users can view the globe as a whole and zoom into

building or street level to see their details.

Fast rendering of 3D city models within web-based applications

still remains challenging. Recently, various efforts have been

made in order to design progressive delivery of 3D content, for

the use with high-performance 3D applications on the web, but

not for large-scale geospatial data such as 3D building models.

The Khronos Group proposes the glTF format for the transmission

of 3D models into WebGL applications. The format is designed in

a straightforward manner so that it maps very well to GPU

structures on the client side. But the format does not support the

progressive transmission of meshes. Other authors try to improve

the problem by porting Progressive Meshes (PMs), originally

presented by Hoppe [12], to the web [10]. Even that, the lack of

view-dependency makes this method still be slow on the web. To

deal with rendering complex geometries at interactive framerates,

Hoppe [4] proposes to use view-dependent refinement of PMs.

The data has hierarchical structure which allows the viewer to

remove redundant data and adjust LOD to adapt the mesh

complexity according to its contribution to the rendered image.

However, the PMs are only working with manifold geometry

which is applicable to terrain data but not to 3D city models. In

addition, it introduces significant decode time overhead. As

alternatives for the PMs, Streaming Meshes, proposed by

Lindstrom et al. [11], try to reorder input mesh data in such a way

that it can be split into fixed-size memory buffers. This enables a

simple progressive transmission of mesh data, and direct upload

of downloaded data to GPU memory. In a similar spirit, the POP

buffer algorithm [8] sorts the triangle mesh using hierarchy of

quantization grids. The triangles can then be grouped according to

the precision level where they first appear, which enables the

creation of a nested, progressive structure. The data is then saved

in SRC format [7] which is a modified version of glTF. The

methods focus on progressive mesh transmission; the lack of

spatial hierarchical data structure and view-dependent LODs

control still make the system suffer from latency; no loading

priority is used for data items in this approach. In addition, the file

format is not compact and is unusable for our purposes.

3. Chunk-based multi-resolution models
In our case, the 3D city models are reconstructed from Terrestrial

and Airborne Lidar point clouds [15]. The models have very high

resolution; the amount of data goes to terabytes of storage for a

city that does not allow us either to render them directly or to keep

them in the main memory. We need two strategies: A chunk-

based multiple resolution data structure (CMRs) which reduces

complexity of the geometry being rendered and supports

progressive data transmission, and a view-dependent out-of-core

strategy to filter out as efficiently as possible the data that is not

contributing to the rendered image and cope efficiently with the

insufficient amount of GPU and CPU memory. Our method must

scale well with our large-scale geospatial datasets; enabling a

progressive transmission of mesh data; reducing loading time with

data compression; eliminating decode time by decoupling render

thread and decode thread; the data structure must be GPU friendly

so that it can be uploaded directly to GPU after decompression.

Dealing with city wide 3D models. Difficulties arise when

rendering large-scale 3D models of a city because simplification

methods start from a detailed mesh and the city models contain

huge information that does not fit to main memory. Various

techniques have been presented to face the problem of huge mesh

simplification: Out-of-core construction using memory insensitive

simplification, proposed by Lindstrom [3], to construct a

multiresolution hierarchy; External memory management

proposed by Cignoni et al [2] to construct an octree of huge

meshes. These methods seem to be very interesting, they can deal

with a huge mesh of hundred million of triangles, but it still does

not work with our large-scale geospatial data which has

quadrillion of triangles and may take terabytes of storage for

whole city.

To deal with that, we borrow an idea from traditional approach of

imagery, the city models are partitioned into tiles (i.e. squared

mesh block). By partitioning the data into tiles, we can address

main memory constraints, but the tile data were still heavily GPU

/CPU bound. Even when we apply LOD on tiles, it is unable to

generate model updates at full GPU speed and to efficiently

communicate them to the graphic card, because of mesh size at

high LOD. A solution is to depart from multiple LOD meshes and

to adopt a chunk-based hierarchical data structure; each chunk is a

set of triangles, a connected part of the mesh, from which our

view-dependent Chunked-LOD algorithm can efficiently stream

and render data. In addition, with a tiling system, we can easily

apply horizon culling to eliminate tiles which are occluded by the

horizon.

Chunk-based multi-resolution model for tile. Some parts of tile

may be occluded or outside the view frustum and thus do not

contribute to the rendered image. In addition, some regions of a

tile may lie closer to the viewer than others; so separated parts of

a tile need to be rendered at different levels of details. This

problem can be addressed by creating a hierarchy of meshes

within a tile. In [2][3], authors propose to use an octree or a kd-

tree to partition a mesh into multi resolution fragments. But their

multiresolution structures make the CPU a bottleneck because

they take decisions at the triangle/vertex primitive level. This kind

of approach is thus not able to choose what has to be rendered fast

enough.

To overcome this bottleneck, we reuse the ideas proposed in

[5][6], where the granularity is moved from individual triangles to

chunks of triangles. We use a Kd-tree to arrange mesh fragments

(chunks) at different resolutions. The chunk is optimized in a

GPU friendly fashion with a triangular-stripe layout and is thus

ready to send to GPU memory on demand. The root node if each

tile thus contains a drastically simplified version of its original

mesh. Each child node contains a subset of its parent, where each

subset is more detailed than its parent but covers a smaller spatial

extent. The union of the meshes borne by leaves of Kd-tree

(maximum depth) encodes the original tile mesh at full resolution.

In rendering, GPU only needs to consider each chunk rather than

considering individual triangles, as is required in state of the art

algorithms. A chunk in the distance may be rendered with less

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial

advantage and that copies bear this notice and the full citation on the
first page. Copyrights for third-party components of this work must

be honored. For all other uses, contact the Owner/Author.

Copyright is held by the owner/author(s).
SIGSPATIAL'16, October 31 - November 03, 2016, Burlingame, CA,

USA

ACM 978-1-4503-4589-7/16/10.
http://dx.doi.org/10.1145/2996913.2997008

http://vcg.isti.cnr.it/nexus/ * https://cesiumjs.org/2013/04/25/Horizon-culling/

 geometry and lower resolution textures if it were close to the

viewer. In this way, the amount of processing that needs to be

done by the CPU/GPU is greatly reduced. CMRs can also reduce

the quantity of data sent to the GPU over the system bus

Figure 1: A tile mesh of 100x100 meters, containing 350K

faces and 256K vertices. Figure (a) illustrates root node that is

drastically simplified version of tile. Figure (b) shows second

level of tree when camera approaches and (c) (d) shows its

other levels when camera is close to the building façade, we

can see a more detailed mesh without any cracking issue. The

colors identify the chunks.

Cracking and popping artifact. Chunk-based multi resolution

produces popping artifacts when switching between different

LODs. To enforce continuity of the surface along the boundary of

the chunks at different resolutions, many techniques are proposed

such as marking, stitches and geo-morphing [6]. Among them, we

found that the geo-morph technique works well; it allows

eliminating popping artifacts between different LODs. The

technique interpolates smoothly geometries from different LODs.

An example of geo-morph is illustrated in figure 1 (d)

Pre-computed viewing parameters. The viewing parameters

(such as the geometric error, the chunk’s bounding volume,

horizon culling points, pivot, etc) are used by the Chunked-LOD

algorithm to eliminate redundant data. These parameters have a

high computational cost. In our work, such parameters are pre-

computed so that the viewer only needs to load them as metadata

without any additional computation.

Progressive data streaming format. We want to save our tile in

a file but we do not want to send all data within a single batch as

our tile mesh has a hierarchical data structure. We found the

Nexus format (**) which is very well designed for multiple

resolution meshes. We extend this format for our geo-spatial data

by adding the parameters that will be used by our Chunked-LOD

algorithm (HC points, pivots, etc).

4. Massive rendering on Globe
Considering that 3D models for a city are often measured in

terabytes, it comes as no surprise that the entire dataset cannot be

in client memory (GPU/CPU’s) all at once. No web-based

application can cope with this size, which demands us to cut the

dataset into tiles and construct CRMs for each tile. This

hierarchical data structure motivates the use of out-of-core

rendering algorithms. The idea is to visualize only tiles which

have compatible viewing parameters (view frustum, HC, SSE).

By using view parameters, new portions (chunks) of the tile mesh

are brought into system memory, and old portions are removed,

ideally without stuttering rendering. This allows us to keep only

small subset chunks in system memory. The rest resides in a file

in secondary storage on network server.

In this paper, we do not combine our tiles into a unique tree for a

city or all cities on the Earth. Instead, we manage multiple trees to

show a city on the globe, this allows us to easily use horizon

culling (HC) technique to eliminate tiles which are occluded by

the globe shape.

Chunked-LOD algorithm. We extended a view-dependent

algorithm, called Chunked LOD, originally proposed by Ulrich

[13], for massive terrain rendering. Unlike Ulrich’s method, our

Chunked-LOD algorithm operates on tiles and also on chunks. In

addition, we use an additional culling condition to eliminate tiles

which are not contributing to the rendered image. Our algorithm is

structured as in figure 2.

Our Chunked-LOD algorithm operates first on tiles to verify

which tiles are visible from the camera, checking two conditions:

Frustum and Horizon. Thanks to the pre-computation of viewing

parameters, we do not need to load chunk data to estimate these

parameters. The viewing parameters are saved in file header and

are only loaded the first time the tile appears to be visible from the

camera. For each visible tile, we start at root node, according to

screen space error (SSE), if the node has sufficient details for the

scene, it is rendered. Otherwise, the node is refined, meaning that

its children are considered for rendering instead. This process

continues recursively until the entire tile is rendered.

Figure 2: View-dependent Chunked-LOD algorithm

Unlike original Chunked-LOD algorithm which needs data to be

available in client memory to compute viewing parameters, our

method runs very fast because the viewing parameters are pre-

computed. Only relevant chunks, which are added to the render

list, must be downloaded from the server.

Screen space error (SSE). We determine the required chunk

LOD with SSE which measures the number of pixels of difference

that would result by rendering a lower-detail version of the chunk

rather than its higher-detail version. The SSE is upperbounded by

dividing the geometric error by the distance from the viewpoint to

the bounding sphere. If the bounding sphere is outside of the

camera’s frustum, the SSE is set to zero, if the viewpoint is inside

the bounding sphere, the SSE is infinite

Tile horizon culling. When it comes to rendering a city on a

globe, we need to consider the Earth itself as an occluder

especially when the viewer is close and parallel to terrain surface,

horizon culling really eliminates many occluded tiles (***).

5. Results
Our system is designed for high resolution data as the one

illustrated in figure 1. The tile mesh is reconstructed from

Terrestrial and Airborne Lidar point clouds and contains 350K

faces and 256K vertices within a 100x100 meters extent. At this

time, we do not have the data in large-scale, for a city by example,

but this data can go to terabytes of storage for a whole city. As we

can see in the figure 1, thank to Chunked-LOD algorithm, only

chunks which are in the view frustum and satisfy SSE will be

extracted and be streamed progressively to web browser. The

parts of tile mesh which are outside of camera frustum stay on the

server side in the same file. During navigation, new portions of

the mesh are brought into system memory and old portions are.

Precomputed chunks are also compressed and organized in GPU

friendly fashion; so that they can be sent and updated easily to

GPU memory with zero copy GPU uploads. Decompression can

be done in rendering thread but doing that causes severe stalls,

making the globe unusable. Instead, chunks are loaded and

decompressed in separate threads in our Chunked-LOD program.

Figure 3: Co-visualization of Bati3D with iTowns’s virtual

globe

The data illustrated in figure 1 is not available at this time for a

whole city. We test our system again large-scale problem with the

Bati3D, 3D city models produced by IGN. This database contains

3D building models of some French cities. Figure 3 shows how

our proposed method can visualize Bati3D of the entire Paris city

within the iTowns virtual globe. This database is partitioned into

squared tiles of 500x500 meters. For a whole city such as Paris,

we have around 400 tiles. Each tile contains approximately 100K

faces and vertices. When camera is far from the terrain (as

illustrated in figure 3 (a)), the view encompasses the entire globe,

the entire terrain is inside the frustum and thus nothing is culled.

SSE becomes very important, at such an altitude, any building

details are visible. Thanks to SSE, no building is selected to

render list (figure 3 (a)), only imagery and DTM are rendered on

the globe. Figure 3 (b) shows the footprint of 3D building model;

at this level, only simplified building mesh of the root node is

downloaded and rendered. When zoomed in, however, our

Chunked-LOD method eliminates a large percentage of the tiles

and chunks that should not be rendered. Figure 3 (c) illustrates

more building details when camera is closer to them.

Conclusions and future works: We proposed some technical

solutions to co-visualize 3D city models on Web-based virtual

globe. Experimental results show that we can navigate over 3D

cities on the globe in real-time. For future works, the approach

will be extended to multiple directions, including the support of

textured meshes and heterogeneous tile and chunk hierarchies.

6. REFERENCES
[1] Fay Chang, Jerey Dean, Sanjay Ghemawat, Wilson C. Hsieh,

Deborah A.Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes,

and Robert E.Gruber. Bigtable: A Distributed Storage System for
Structured Data."In Proceedings of the 7th Conference on USENIX

Symposium on OperatingSystems Design and Implementation, 7, 7,

pp. 205

[2] Paolo Cignoni, Claudio Montani, Claudio Rocchini, and Roberto
Scopigno. 2003. External Memory Management and Simplification

of Huge Meshes. IEEE Transactions on Visualization and Computer
Graphics 9, 4 (October 2003), 525-537.

[3] Peter Lindstrom. 2003. Out-of-core construction and visualization of

multiresolution surfaces. In Proceedings of the 2003 symposium on
Interactive 3D graphics (I3D '03). ACM, New York, NY, USA, 93-

102.

[4] Hugues Hoppe. 1997. View-dependent refinement of progressive

meshes. In Proceedings of the 24th annual conference on Computer

graphics and interactive techniques (SIGGRAPH '97). ACM

Press/Addison-Wesley Publishing Co., New York, NY, USA, 189-
198.

[5] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio and R.

Scopigno, "Batched multi triangulation," VIS 05. IEEE Visualization,

2005., 2005, pp. 207-214. doi: 10.1109/VISUAL.2005.1532797

[6] S. E. Yoon, B. Salomon, R. Gayle and D. Manocha, "Quick-VDR:
out-of-core view-dependent rendering of gigantic models," in IEEE

Transactions on Visualization and Computer Graphics, vol. 11, no.
4, pp. 369-382, July-Aug. 2005.doi: 10.1109/TVCG.2005.64.

[7] Max Limper, Maik Thöner, Johannes Behr, and Dieter W. Fellner.

2014. SRC - a streamable format for generalized web-based 3D data
transmission. In Proceedings of the 19th International ACM

Conference on 3D Web Technologies (Web3D '14). ACM, New

York, NY, USA, 35-43.

[8] M. Limper, Y. Jung, J. Behr, M. Alexa: "The POP Buffer: Rapid
Progressive Clustering by Geometry Quantization", Computer

Graphics Forum (Proceedings of Pacific Graphics 2013).

[9] Adrien Maglo, Ho Lee, Guillaume Lavoué, Christophe Mouton,
Céline Hudelot, and Florent Dupont. 2010. Remote scientific

visualization of progressive 3D meshes with X3D. In Proceedings of

the 15th International Conference on Web 3D Technology (Web3D
'10). ACM, New York, NY, USA, 109-116.

[10] Guillaume Lavoué, Laurent Chevalier, and Florent Dupont. 2013.

Streaming compressed 3D data on the web using JavaScript and
WebGL. In Proceedings of the 18th International Conference on 3D

Web Technology (Web3D '13). ACM, New York, NY, USA, 19-27.

[11] M. Isenburg and P. Lindstrom, "Streaming meshes," VIS 05. IEEE
Visualization, 2005., 2005, pp. 231-238. doi:

10.1109/VISUAL.2005.1532800

[12] Hugues Hoppe. 1996. Progressive meshes. In Proceedings of the

23rd annual conference on Computer graphics and interactive
techniques (SIGGRAPH '96). ACM, New York, NY, USA, 99-108.

[13] Thatcher Ulrich. Rendering Massive Terrains using Chunked Level

of Detail Control, cours in Super-size it! Scaling up to Massive
Virtual Worlds, SIGGRAPH, 2002.

[14] Patrick Cozzi and Kevin Ring. 2011. 3D Engine Design for Virtual

Globes (1st ed.). A. K. Peters, Ltd., Natick, MA, USA.

[15] N. Paparoditis, J.-P. Papelard, B. Cannelle, A. Devaux, B. Soheilian,
N. David, E. Houzay. Stereopolis II: A multi-purpose and multi-

sensor 3D mobile mapping system for street visualisation and 3D
metrology. Revue Française de Photogrammétrie et de Télédétection

200: 69-79, October 2012

