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ABSTRACT
Active learning (AL) has shown a great potential in the field

of remote sensing to improve the efficiency of the classifica-

tion process while keeping a limited training dataset. Active

learning uses heuristics to select the most informative pixels

in each iteration. In literature, there are several metrics and

selection criteria. In this paper, we focus on the uncertainty

heuristics for large margin active learning. Existing uncer-

tainty metrics are presented and combined to new ones us-

ing support vector machine learning algorithm. Besides, a

new methodology is proposed, which automates a priori the

choice of the best uncertainty heuristic. This contribution is

evaluated on hyperspectral datasets while varying two param-

eters: class mixing and class balance. Finally discussion and

conclusion are drawn.

Index Terms— Active learning, large margin, uncer-

tainty, support vector machine, metrics.

1. INTRODUCTION

Statistical learning models are intensively used by remote

sensing community [1]. Support Vector Machines (SVMs),

neural networks and Random Forest are the most considered

for the land use classification. However, supervised algo-

rithms performance depends on data representation used to

build the models classifier. This constraint makes generat-

ing an efficient learning set more difficult and expensive,

requiring a deep manual image analysis or field surveys and

successive labelling of each pixel [2].

Defining an efficient learning set is a key issue in remote

sensing image classification. Limited financial and temporal

resources, the complexity of algorithms and a high intraclass

variance performed with a sub-optimal dataset, can make an

algorithm fail. Active learning aims to build an efficient learn-

ing set by improving the model performance by iteratively

growing learning set.

The classification model is adapted regularly by adding

new labelled pixels which are most beneficial for improving

the model performance. The active learning strategy has been,

at a vast majority, used with SVM classification [3]. To iden-

tify the most informative pixels, it needs a strategy to rank

candidate pixels. Two criteria are often coupled: uncertainty

and diversity. The uncertainty criterion is related to the al-

gorithm confidence in correctly classifying a pixel. The di-

versity criterion ensures that the learning pixels are differ-

ent from each other. The existing methods can be grouped

into three main families [2]: (1) query by-committee ; (2)

posterior probability and (3) large margin heuristics. In [4],

the three main AL families are presented with a comparative

study focused on uncertainty methods and based on [2]. This

study is focused on the large margin active learning and espe-

cially the uncertainty heuristics.

In literature, the key issue is the fact that different uncer-

tainty measures are used and behave differently with regard

to various hyperspectral data. The study tries to automate the

choice of the best uncertainty measures based on the first it-

eration. The methodology is evaluated on hyperspectral data

with two varying parameters: class mixing and class balance.

2. UNCERTAINTY HEURISTICS OF LARGE
MARGIN AL

This family is based on support vector machine (SVM)

method. The separation distance of the hyperplane is a sim-

ple way to estimate the model confidence on an unlabelled

pixel. A minimum distance means that the pixel is close to

the hyperplane, giving a maximal uncertainty. In a binary

classification, the distance between a pixel and the SVM

hyperplane is given by:

f(xi) =
n∑

j=1

αjyjK(xj, xi) + b (1)
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Where K(xj , xi) is a kernel, which defines the similarity be-

tween the candidate xi and the Support Vectors (SV) xj ,

which are the pixels showing non zero αj coefficients. And

yj is the labels of the support vectors. The heuristic that takes

advantage of this property is called Margin Sampling (MS).

Three heuristics illustrate the corresponding uncertainty cri-

terion; MS, MCLU and SSC. They are summarized in table

1.

2.1. Margin Sampling (MS)

The MS heuristic takes benefits of the SVM geometric prop-

erties by the fact that SVs are labeled examples which are

related to the margin with a value equal to one. MS performs

a candidate sampling that minimizes f(xi) [5].

2.2. MultiClass Level Uncertainty (MCLU)

The MCLU is extended from MS to solve the uncertainty

problem of multi classes. There are two functions to mini-

mize [6] :

• The function f(xi, w) which is the pixel distance rela-

tive to the hyperplane and defined for the class w in the

case of multiple classes.

• The function f(xi)
MC which gives a confidence value.

Instead of considering the most uncertain SVM class,

MCLU estimates the difference between the distances

of the two most likely classes relative to the margin.

2.3. Significance Space Construction (SSC)

The uncertainty in this heuristic is measured by using a coeffi-

cient in order to convert the multi-class classification problem

into a binary one. This results in the definition of a new clas-

sification function that allows to choose pixels which are most

likely to become SV [2].

AL R H Advantage Disadvantage
[5] MS More efficient

if initial train-

ing set is small.

-

Large

margin

[6] MCLU Simpler and

more effi-

cient if mixed

classes

-

[7] SSC Simple and

easy.

takes into

account only

SVs.

Table 1: Considered large margin uncertainty heuristics (R=

Reference, H= Heuristic).

3. METHODOLOGY

In practice, uncertainty metrics performances vary highly

with the dataset. To tackle this issue, this work proposes

two novelties: 1) the existing MS and MCLU heuristics are

combined and two new metrics are proposed, 2) an automa-

tion of the best uncertainty heuristic choice since the first AL

iteration is proposed.

3.1. Proposed uncertainty heuristics

Two large margin uncertainty heuristics are proposed which

combine MS and MCLU metrics. All metrics are normalized

by their maximum. At each iteration, candidate pixels are

sorted with regard to the considered metric, a batch of n most

uncertain pixels is then selected and added to the training set.

MEAN: This metric is designed to select pixels that have

a low average value between MS and MCLU results assuming

that uncertain pixels will have low values in both metrics.

MIN: This heuristic aims to choose pixels that have the

lowest uncertainty value between MS and MCLU heuristics.

Then, the lowest values of MIN metric lead to the most un-

certain pixels.

3.2. Datasets

In order to evaluate our methodology, the idea is to use an ex-

isting original hyperspectral dataset and to modify its parame-

ters to simulate new datasets. Two parameters are considered:

class mixing and class balance. Among the literature hyper-

spectral datasets, Pavia university one was chosen since it is

unbalanced and has well distinguished classes which allows

us to simulate two other datasets.

PaviaU : It has been acquired by ROSIS sensor at a 4 nm

spectral resolution and a 1.3 m spatial resolution. The image

consists of 103 spectral bands. The ground truth differentiates

9 classes.

PaviaU-MUB: Mixed and UnBalanced classes. Pixels be-

longing to similar thematic classes are grouped leading to

mixed classes.

PaviaU-UMB: UnMixed and Balanced classes. The same

number of pixels will be kept for each class.

3.3. Margin histogram indicators

Our assumption is to say that the metric whose distribution

has more uncertain pixels will be more efficient for the AL

process. The analysis of each metric distribution at the first

AL iteration is processed using different histogram indicators

that will helps us choosing the best metric. The tested indica-

tors are:

• Average (A): The mean value of the distribution.

• Standard Deviation (SD) : measures the amount of

variation or dispersion from the average.
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• Skewness (S): is an indicator of distribution asym-

metry. If S > 0: Right skewed distribution where

most values are concentrated on the left of the mean.

If S < 0 : Left skewed distribution, most values are

concentrated on the right of the mean.

• Kurtosis (K): is a measure of whether the data are

peaked or flat relative to a normal distribution. Indeed,

data sets with high kurtosis tend to have a distinct peak

near the mean, while distribution with a flat top near the

mean will lead to a low kurtosis.

• First Quartile (Q1) : The quartiles of a ranked set of

data values are the three points that divide the data set

into four equal groups. The first quartile (Q1) corre-

sponds to the first quarter of the data.

4. EXPERIMENTS

4.1. Experimental Setup

In order to evaluate the proposed methodology, experiments

were conducted on three pavia data sets, described above.

For each experiment, the reference pixels were split in

three sets, corresponding to initial balanced training set L0

with Card(L0) = 45, the unlabeled candidate set U with

Card(U) = 700, and the test set. The AL algorithm is

applied with SVM algorithm.

In this paper, we consider a photo-interpretation context

(as often in literature), thus the number of iterations nIt can

be important and the number of added pixels at each iteration

(Batch B) can be small. In our experiments, we fixed nIt =
20 and Card(B) = 5.

4.2. Results

All uncertainty heuristics; MS, MCLU, MEAN and MIN are

applied for the first AL iteration on the three datasets. Results

are presented from the easiest to the more complicated cases.

4.2.1. PaviaU-UMB

This Pavia simulation has unmixed classes and a balanced

dataset. Table 2 summarizes the histogram indicators for all

metrics. Figure 1(a) illustrates the classification Kappa values

with AL iterations for all metrics.

When analysing both results, one can observe that most

pertinent indicators are Average (A) and Quartile Q1. The

lower they are, the more uncertain pixels are. Metrics with the

lowest A et Q1 values will be considered as the most efficient

for AL process on the current data. In this case, it appears

to be the MIN metric, which is also confirmed by the Kappa

values. On the contrary, the MS metric with the highest A and

Q1 values leads to the lowest kappa values. However, in this

easy case, all metrics tend to have similar Kappa values while

MIN metric seems to be the most efficient at the end of the

process. Moreover, for all metrics, the AL process allows to

increase the kappa values by almost 10%.

Heuristic A SD S K Q1

MS 0,63 0,32 -0,44 1,74 0,33

MCLU 0,51 0,25 -0,46 2,01 0,30

MEAN 0,57 0,28 -0,42 1,69 0,29

MIN 0,44 0,24 -0,33 1,93 0,23

Table 2: Distribution indicators for PaviaU-UMB simulation

4.2.2. PaviaU

For the original data with unmixed classes and a unbalanced

dataset. Distribution indicators are summarized in table 3. AL

classification performances are illustrated on figure 1(b).

Once again the MIN metric leads to the lowest A and

Q1 values, showing more uncertain pixels. The performance

MIN metric is confirmed by Kappa values since it is the most

efficient metric both at the beginning and end of AL process.

Finally, the contribution of AL process is higher in more com-

plicated cases. The kappa value is increased by almost 25%.

Heuristic A SD S K Q1

MS 0,48 0,31 0,02 1,61 0,19

MCLU 0,40 0,23 0,01 1,97 0,19

MEAN 0,49 0,29 -0,01 1,58 0,20

MIN 0,38 0,24 0,01 1,81 0,14

Table 3: Distribution indicators for PaviaU dataset.

4.2.3. PaviaU-MUB

This unbalanced dataset with mixed classes is the more com-

plicated study case. The distribution indicators are given in

table 4. AL classification performances are reported on figure

1(c).

From the indicator table, one can see that the MIN metric

has again the lowest values for both A and Q1 and its higher

performance is confirmed by the Kappa values.

For this worst study ca,s the kappa reaches 0.8 improving

the initial result by 20%.

Heuristic A SD S K Q1

MS 0,57 0,31 -0,23 1,63 0,29

MCLU 0,44 0,23 0,05 2,29 0,28

MEAN 0,47 0,27 0,10 1,84 0,23

MIN 0,43 0,27 0,02 1,84 0,19

Table 4: Distribution indicators for PaviaU-MUB simulation
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Fig. 1: AL Classification performance of uncertainty metrics.

(a) PaviaU-UMB dataset, (b) PaviaU dataset and (c) PaviaU-

MUB dataset

These experiments allow to conclude on three points: 1)

the efficiency of the proposed MIN metric that combines MS

and MCLU ones 2) the automatic selection of uncertainty

metric is possible using metric distribution indicator 3) the

contribution of AL process is more important in complex clas-

sification problem.

5. CONCLUSION

In this paper, new AL uncertainty heuristics, that are a combi-

nation of MS and MCLU ones were proposed. Keeping pixels

with the minimal value for both metrics led to the best clas-

sification performances. Results were validated on derived

hyperspectral data from PaviaU dataset varying class mix and

class balances parameters. In addition, we proposed to au-

tomate the choice of the uncertainty metric, which is data-

dependent. Our proposed method is based on the distribution

indicators of the 1st AL iteration. Average and first quartile

seems to be the most efficient indicators to predict the best

uncertainty heuristics. This strategy offers the advantageous

automated prediction of the most efficient metrics only from

the first AL iteration.But, the proposed strategy is only valid

with the uncertainty criteria. Similar work has to be done us-

ing diversity criteria. Moreover, as future work, more simula-

tion will be processed using other parameters and on different

datasets.
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